

Acid-Base Physiology in a Single Page

D. John Doyle MD PhD, October 11, 2016 Rev 3

Respiratory Component: When breathing is inadequate (minute ventilation too low) arterial CO₂ builds up. This CO₂ combines with water to make carbonic acid, which in turn lowers

arterial pH (raises arterial hydrogen ion concentration, since $[H^+]$ in nEq/L = 10 ^(9-pH) or pH = 9 – log ₁₀ $[H^+]$). This is called **respiratory acidosis**. The treatment is to lower the CO₂ tension (arterial pCO₂) by improving the patient's breathing (increasing minute ventilation), for example by employing a ventilator to mechanically breathe for the patient or by giving naloxone to a patient who has received excessive opioid drug (e.g., heroin overdose). Respiratory acidosis can be **acute or chronic**, depending on the degree of compensation (formulas available). To compensate for respiratory acidosis the kidneys increase blood bicarbonate concentration, aka [HCO3⁻], via enhanced renal retention of bicarbonate. (Think of bicarbonate as the blood's antacid.) Finally, if an individual breathes with a very large minute volume (hyperventilation) **respiratory alkalosis** is said to occur and the kidneys will eventually dump bicarbonate to compensate so as to keep the pH in the desired range.

Metabolic Component: When blood bicarbonate is diminished, as in a number of pathologic states (e.g., lactic acidosis, diabetic ketoacidosis, renal failure, etc.), the arterial pH drops (arterial hydrogen ion concentration increases). (This effect is a direct consequence of the **Henderson-Hasselbalch equation**, which describes the relationship between the respiratory and metabolic components: $[H^+]$ in nEq/L = 24 x arterial pCO₂ (mm Hg) / serum bicarbonate.) This is known as metabolic acidosis. To compensate for this, the respiratory control centers in the medulla and pons try to lower the pCO₂ by increasing minute ventilation (seen clinically as **Kussmaul breathing**). The appropriate degree of compensation is given by **Winter's formula**: The **expected arterial pCO₂ in metabolic acidosis (in mmHg) = (1.5 x bicarbonate concentration)** + 8 (range: +/- 2). If the

Ac	id Ba	ase [Disorders	
Disorder	pH	[H*]	Primary disturbance	Secondary response
Metabolic acidosis	+	1	↓ [нсо₃·]	↓ pCO ₂
Metabolic alkalosis	1	+	1 [нсо₃·]	↑ pCO ₂
Respiratory acidosis	t	1	↑ pCO₂	↑ [HCO ₃ ·]
Respiratory alkalosis	1	Ŧ	↓ pCO₂	↓ [нсо₃-]

respiratory system is unable to compensate appropriately (lower the pCO₂ sufficiently), the patient is said to have a superimposed respiratory acidosis in addition to a metabolic acidosis. **Metabolic acidosis comes in two types**: normal anion gap and elevated anion gap (elevated over 17), where the anion gap is defined as **anion gap = serum sodium – (serum bicarbonate + serum chloride).** Finally, **metabolic alkalosis** can occur, for example via loss of hydrogen ions from vomiting or from renal retention of bicarbonate. Metabolic alkalosis comes in **two types:** chloride-responsive (urine chloride < 20 mEq/L) versus chloride resistant (urine chloride > 20).

The expected pCO₂ (in mm Hg) in metabolic alkalosis = 0.7 x serum bicarbonate + 20 (range: +/- 5).